Swarming UAS II

MAJ Matthew Dabkowski, MS,
USMA, Department of Systems Engineering

Mr. James Cook
Donnelly & Moore Corporation

LTC Robert Kewley, PhD,
USMA, Department of Systems Engineering

May 5, 2010

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED

05 MAY 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Swarming UASI |

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

USMA, Department of Systems Engineering,West Point,NY,10996 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 47
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Executive Summary

Problem Definition The Aviation and Missile Research, Development, and Engineering Center (AM-
RDEC) Advanced Science and Technology Unmanned Systems Office plans the way ahead for UAS. Their
intent is to pursue technologies that increase the functionality of UAS while simultaneously reducing the
workload on the user. Recent Operations Research Center of Excellence (ORCEN) research by MAJ Ed
Teague, DSE-R-0808, showed that simple rule sets can organize multiple UAS to complete tasks with little
or no input from controllers/users (Teague and Kewley, 2008). As a matter of design, DSE-R-~0808 employed
biomimicry to model a swarm of UAS as a colony of ants, where each UAS dynamically updates a global
memory map, allowing pheromone-like communication (see DTIC: ADA489366 for additional details). In
particular, the major findings of DSE-R-0808 were:

e Semi-Autonomous Self-Organizing (SASC) UAS are possible using preprogrammed tasks and pheromone
communication methods.

e Depending on the rate of pheromone decay and the influence of distant pheromone levels, multiple UAS
seem to sufficiently cover a large area without any input beyond a global rule set.

e SASC behaviors were tested via federated simulation, and its performance is comparable to prepro-
grammed routing without the overhead.

Technical Approach With this in mind, this year’s objective was to advance the efforts of DSE-R-0808
through improved rule sets in order to achieve better results using doctrinal mission sets employing semi-
autonomous, self-organizing UAS in dynamic environments. Accordingly, the principal research tasks were
as follows:

e Develop improved rule sets for controlling swarming behavior.

e Develop a modeling and simulation test bed for swarming, small UASs in order to test the differential
aspects of system components.

e Evaluate various UAS parameters to see how efficient /effective a swarm would be given a set of hardware
(software) and recommend hardware (software) solutions.

Results In short, we successfully implemented and tested 9 different swarm controllers, using a stand-
alone, custom Haskell simulation script we created. Moreover, in addition to several obvious performance
metrics, we developed a novel measure, volume suppressed, which gauges the swarm’s ability to minimize
the enemy’s windows of opportunity (space/time windows for the enemy to maneuver unobserved).

Disclaimer

Administratively, this study was funded by the US Army Aviation and Missile Research, Development, and
Engineering Center as part of a year-long effort in support of the Statement of Work entitled, “Swarming
UAS II.” The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes

notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as representing the official policies or endorsements, either
expressed or implied, of the AMRDEC, USMA, or the U.S. Government.

ii

CONTENTS

Contents

Introduction

Background

2.1 Problem Description e e e e e e e
2.2 Objective and Principal Tasks
2.3 Literature Review o L e

2.4 Principal Assumptions e e e e e e e e e e

Controllers

Initial Metrics

Preliminary Experimentation and Analysis

5.1 Visitation Counts L L
5.2 Inmitial Visitation Times o e e e
5.3 Maximum Intervisitation Times L
5.4 Average Intervisitation Times
5.5 UAV Trajectories in Space and Time

Volume Suppressed
Controller Comparison
Future Work
Conclusions

Haskell Simulation Code

A1 Main . ..o e
A.2 Neighborhood o e
A3 Cell Selection
A4 Controllers
A5 Output Analysis oL e e

15

16

19

19

iii

CONTENTS

iv

2 BACKGROUND

“Restless thoughts, like a deadly swarm of hornets arm’d, no sooner

found alone, but rush upon me thronging.” — John Milton

1 Introduction

It was perfect. Sitting on the edge of the United
States Military Academy’s placid Lusk Reservoir, I
enjoyed the warmth of a late spring sun, a pleasant
easterly breeze, and the company of my children, as
we passed the afternoon wetting a line. Like all pre-
vious fishing trips, the patience of my youngest was
proportional to the frequency of the bite, and, al-
though the weather was excellent, the fish were less
than cooperative. Accordingly, he reeled in his line
and decided to climb a small tree directly behind
us. That’s when I heard it - the guttural, animal-
istic scream that every parent dreads. My son was
hurt.

As T simultaneously sprang up and swiveled my head
to assess the situation, it took me a moment to reg-
ister what I saw. There, swirling around my son like
a chaotic yet strangely orchestrated cloud was a very
angry, substantial swarm of hornets. I clenched my
jaw, dropped my head, and went in. Needless to say,
the insects carried the day, easily defeating a smarter,
larger, and more advanced enemy; the swarm had
won.

2 Background

2.1 Problem Description

While the concept of swarming is well known in na-
ture and has been extensively researched, the dawn
of the information age has only recently made such
tactics possible for humans (Arquilla & Ronfeldt,
2000). Specifically, in their excellent RAND study ti-
tled “Swarming and the Future of Conflict,” Arquilla
and Ronfeldt remark:

Swarming has two fundamental require-
ments. First, to be able to strike at an

!Does not include man-portable systems (e.g., the Raven).

adversary from multiple directions, there
must be large numbers of small units of
maneuver that are tightly internetted—i.e.,
that can communicate and coordinate with
each other at will, and are expected to do
so. The second requirement is that the
“swarm force” must not only engage in strike
operations, but also form part of a “sen-
sory organization,” providing the surveil-
lance and synoptic-level observations nec-
essary to the creation and maintenance of
“topsight” (Ibid, pg. 22)

With this in mind, bold advances in communica-
tion capabilities and network architectures satisfy
the requirement for “tight internetting.” Likewise,
new data fusion software quickly transforms myriad,
seemingly disparate pieces of information into collec-
tive intelligence, allowing “topsight.” In short, we
have the means; now all we need are the actors - the
“the many and the small” (Ibid.).

While various manned, tactical combat formations
and materiel could potentially fill this void, none
show the promise of the Unmanned Aerial System
(UAS). Capable of responsive intelligence gathering
and offensive strikes with little or no risk of friendly
casualties, UASs have firmly solidified their place in
the military arsenals of many countries. For example,
in 2008 the United States’ Predator UASs alone saw
a 94% increase in combat flight time from 2007, and
over 1,000,000 UAS combat hours have been flown
since the start of the Global War on Terror (See Fig-
ure 1) (Shachtman, 2009).! In order to meet this
surging demand, the number of UASs has “increased
from 167 unmanned planes to 5,331 in the past five
years," [and] it’s still not enough; . . . [d]emand for
video is more than four times the supply” (Shacht-
man, 2008).

2 BACKGROUND

400000
350000
300000
250000
200000
150000
100000

50000
o - - \—r'—IH\H\H\

sanoH 1ybi4

AR . S SRR S R S
R L S S S

v Y Y Y v

[T AIR FORCE m ARMY B NAVY & usMC|

Figure 1: DoD UAS Flight Hours by Department by
Fiscal Year

Coupled with the proliferation of UAS has been an
ongoing and largely successful effort to miniaturize
them. For instance, consider the Battlefield Air Tar-
geting Micro Air Vehicle (BATMAV) depicted be-

low.2
-~
%{{E_

e ol

‘*-gv-‘E“‘v“““"‘—-‘v

R
- =

Figure 2: BATMAV UAS

Designed by AeroVironment for the United States
Air Force’s Special Operations, the BATMAYV is 11.5”
long, has a 16.5” wing span, and weighs only 1 pound
(Department of Defense, 2009, pg. 68). Yet despite
its diminutive size, the BATMAYV is equipped with an
“Internal Global Positioning System / Inertial Navi-
gation System, autopilot and two on-board cameras,”
and it can fly at roughly 40 mph for 45 minutes out
to a range of 5 km (Ibid). While this is nothing
short of astonishing, “future systems could fly tran-
sonically for 1,000 kilometers or endure for tens of
hours” (Abatti, 2005, pg. 18-19).

Clearly, the age of the “many and the small” is dawn-
ing for UAS, carrying with it not only tactical op-
portunities but also dilemmas, not the least of which
will be a shortage of operators. Specifically, current
UASs, to include the BATMAV, require at least one
operator per system and larger platforms typically re-
quire a team. If, however, the supply of UAS contin-
ues to grow in the face of increasing demand, multiple
UAS will have to be controlled by a single operator.
With the emerging n:1 UAS to operator issue on the
horizon, it is not surprising that the second goal of
Office of the Secretary of Defense’s (OSD) FY2009-
2034 Unmanned Systems Integrated Roadmap is to
“[sJlupport research and development activities to in-
crease the level of automation in unmanned systems
leading to appropriate levels of autonomy, as deter-
mined by the Warfighter for each specific platform”
(Department of Defense, 2009). In short, algorithmic
solutions are required.

2.2 Objective and Principal Tasks

The Aviation and Missile Research, Development,
and Engineering Center (AMRDEC) Advanced Sci-
ence and Technology Unmanned Systems Office plans
the way ahead for UAS. Their intent is to pursue
technologies that increase the functionality of UAS
while simultaneously reducing the workload on the
user. Recent Operations Research Center of Excel-
lence (ORCEN) research by MAJ Ed Teague, DSE-R-
0808, showed that simple rule sets can organize mul-
tiple UAS to complete tasks with little or no input
from controllers/users (Teague & Kewley, 2008). As a
matter of design, DSE-R-0808 employed biomimicry
to model a swarm of UAS as a colony of ants, where
each UAS dynamically updates a global memory
map, allowing pheromone-like communication (see
DTIC: ADA489366 for additional details). In par-
ticular, the major findings of DSE-R-0808 were:

e Semi-Autonomous Self-Organizing (SASC) UAS
are possible using preprogrammed tasks and
pheromone communication methods.

2Figure taken from the Directory of U.S. Military Rockets and Missiles, Appendiz 4: Undesignated Vehicles, Wasp at

http://www.designation-systems.net/dusrm/app4/wasp.html.

2 BACKGROUND

e Depending on the rate of pheromone decay and
the influence of distant pheromone levels, multi-
ple UAS seem to sufficiently cover a large area
without any input beyond a global rule set.

e SASC behaviors were tested via federated sim-
ulation, and its performance is comparable to
preprogrammed routing without the overhead.

With this in mind, this year’s objective was to ad-
vance the efforts of DSE-R-0808 through improved
rule sets in order to achieve better results using doc-
trinal mission sets employing semi-autonomous, self-
organizing UAS in dynamic environments. Accord-
ingly, the principal research tasks were as follows:

e Develop improved rule sets for controlling
swarming behavior.

e Develop a modeling and simulation test bed for
swarming, small UASs in order to test the dif-
ferential aspects of system components.

e Evaluate various UAS parameters to see how ef-
ficient /effective a swarm would be given a set of
hardware (software) and recommend hardware
(software) solutions.

2.3 Literature Review

Controlling a swarm of UASs via digital pheromones
is not new, and it is currently being pursued by
multiple agencies. Most notably, in their 2002 ar-
ticle “Digital Pheromones for Autonomous Coordi-
nation of Swarming UAVs,” Parunak et. al. de-
scribe their novel pheromone algorithm (ADAPTIV),
which employs attractive and repulsive pheromones
on a hex grid with roulette selection (Parunak et al.,
2002). More recently, Dasgupta details an agent-
based approach in “A Multiagent Swarming System
for Distributed Automatic Target Recognition Us-
ing Unmanned Aerial Vehicles” (Dasgupta, 2008).
In addition to pheromones, Bae explores a chaos-
based approach in “Target Searching Method in the
Chaotic UAV,” where UAS movement is simulated
using Arnold’s Equation (which models the behavior

of noncompressive perfect fluids) and Chua’s Equa-
tion (which models a simple electrical circuit) (Bae,
2004).

Beyond searching algorithms, Sujit et al. explore
negotiation-based task allocation to multiple, neigh-
boring UAVs (Sujit & Ghose, 2006), and efficient
computation methods are discussed in Walter et
al.’s “UAV Swarm Control: Calculating Digital
Pheromone Fields with the GPU” (Walter et al.,
2006). This latter article is somewhat remarkable
in that it demonstrates that pheromone field calcu-
lations can be performed 30 times faster on a com-
puter’s GPU versus CPU (Ibid.).

While incredibly valuable, however, the research
to date has focused on detecting targets that are
present, not on denying enemy action. Moreover, it
has not incorporated a priori information about the
underlying terrain or enemy activity to inform the
swarm. Finally, although Bertuccelli and How pro-
vide an excellent, rigorous analysis of Bayesian up-
dating for a single UAS (Bertuccelli & How, 2005),
probabilistic updating has not been used to influence
the behavior of the swarm.

2.4 Principal Assumptions

e UAS are equipped with Traffic alert
and Collision Avoidance Systems (TCAS).
While airspace may be deconflicted using al-
titude, it is unreasonable to imagine that a
large number of UAS (e.g., 100) operating in
close proximity to one another would never cross
paths. Additionally, as altitude increases the
ability of sensors and communications hard-
ware to interface effectively with the ground de-
creases.

e UAS flight characteristics enable any ad-
jacent grid to be visited next. As seen in
Figure 4, each UAS within the swarm will se-
lect its next location from one its eight adjacent
grids. With this in mind, UAS of the future
must be capable of rapid changes in direction,
as opposed to the smooth, wide sweeping turns
common in today’s fixed wing UAS.

3 CONTROLLERS

e UAS and ground station communication
and processing capabilities allow UAS to
upload / download information to the
global memory map in real-time.

e UAS are operating over a featureless, un-
informed AO. As discussed in Section 4, this
assumption is important, because it forces the
swarm to treat each grid square equivalently. In
other words, locations on the ground cannot be
distinguished as high or low threat.

3 Controllers

As seen in Figure 3, we establish a rectangular area
of operations (AO) A consisting of X x Y square d-
meter? grids, where X and Y represent the number
of horizontal and vertical grid squares respectively,
and the ordered pairs (x, y) represent their addresses,
where z € [0,...,X] and y €[0,...,Y].

d meters
Yylov | avn| ey xY) } d meters
21 02 | @2 | @2 | ++ | X2
1l 0y | @y | @ X, 1)
ol 0o | o | 20 (X, 0)
0 1 2 X

Figure 3: The Area of Operations

Controller #1 - Symmetric Random
Walk

While the previous work of MAJ Ed Teague fo-
cused on pheromones and utilized a global memory

map, the symmetric random walk does not utilize
pheromones at all. As seen in Figure 4, at any time
t, a UAS located at (x,y) randomly selects the next
grid square to search from its set of 8 adjacent neigh-
bors (or local neighborhood) with equal probability.
In the event the UAS is located on the boundary
of the AO, it simply drops any out-of-bounds grid
squares from the set and redistributes the probabil-
ity proportionally.

X-1Ly+1| X, y+1 [x+1,y+1
x-1,y X, Y x+1ly
X-1,y-1| X y-1 [x+1,y-1

Figure 4: The Local Neighborhood

Controller #2 - Deterministic Local
Neighborhood Search

In layman’s terms, deterministic local neighborhood
search directs UASs to focus their search on the
neighboring grid square(s) with the greatest inter-
visitation time. Mathematically, at any time ¢,
the weight of a given grid square (z,y) is given
by wy y(t) = ps,y(t), where pg,(t) represents the
pheromone level in (z,y). At t =0, p, 4 (t) =0Vz,y,
and each UAS within the AO searches its current
grid square. At this point, exponential decay begins
according to the relation p, ,(t) = 7, e Nt 7tew)
where A is a positive, homogeneous decay constant,
ty,y is the last time a UAS searched (z,y), and 4 4
is a binary parameter which equals 1 once (z,y) has
been searched for the first time and 0 otherwise. In
order to select the next grid square to search, a UAS
located in (z,y) will examine the weights of the grid
squares comprising its local neighborhood. Follow-
ing examination, the UAS will search the neighbor-
ing grid square with the lowest weight, and ties are
broken arbitrarily.

3 CONTROLLERS

Q1(1)

Q1)

X y—1

> > Pi,j

i=xj=0
X=e+D=1)
Z Zpi,j
i=05=0

(z—T)y

Qs(t)

Qa(t) =

Controller #3 - Deterministic Local
Neighborhood Search with Quadrant
Averaging

In essence, quadrant averaging modifies the deter-
ministic local neighborhood search algorithm to ac-
count for recent, global visitations, driving UASs
to search the neighboring grid squares which (a)
have not been visited recently and (b) lie in quad-
rants which have relatively large, recent average in-
tervisitation times. Mathematically, at any time ¢,
Wy, y (1) = po.y(t) X Qr(t), where p, ,(t) is defined as
above and @y (¢) represents the average pheromone
concentration in quadrant k¥ = 1...4. As seen in
Figure 5 on the following page, the quadrants are de-
fined with respect to a UAS’s current location (z,y),
yielding the above equations for Qy(t). As with Con-
troller #2, the UAS will then evaluate the weights of
the grid squares in its local neighborhood, and subse-
quently search the neighboring grid square with the
lowest weight.

Controllers #4, 5, 6, and 7 - Mixture
Models

Simply put, these algorithms randomly direct a UAS
to use one of the first three controllers according to
the probability mass function given below:

X—2)(Y—y+1)

for {(z -1,y +1),(z,y +1)}
for {(z + 1,y +1),(z+1,9)}
for {(z,y —1),(z+ 1,y —1)}

for {(z —1,y),(x =1,y — 1)}

p1, c=1

_ p2, Cc= 2

p(UAS uses controller ¢) = ps =3
0, otherwise

For example, at any time ¢, there is pp, probability
that a given UAS will use Controller #2 to select
its next grid square. In this way, Controllers #4 -
#7 utilize Controllers #1 - #3 in proportion to the
mixing parameters specified in Figure 6 below:

Controller

Number 21 P2 o3
4 1/3(1/3]1/3
5 1/211/2 0
6 1/2 0 1/ 2
7 0 1/211/2

Figure 6: Mixing Parameters

Controllers #8 and 9 - Controllers #2
and 3 with Roulette Selection

Functionally, Controllers #8 and #9 are very simi-
lar to #2 and #3, respectively. In fact, the calcu-
lation of pheromone levels, exponential decay, and
quadrant averaging are identical. However, after a
UAS calculates the weights for its local neighbor-
hood, it no longer automatically selects the adja-
cent grid square with the lowest weight — it merely
prefers them through the application of roulette se-
lection. Heuristically, roulette selection generates a

3 CONTROLLERS

oY e . x-2,Y x-1, Y X, Y X+1, Y x+2, Y X, Y

0, y+2 o oo [X2 yH2 [X-1L,y+2 [X, y+2 | X+ Y2 [X2, y+2 | o . . X, y+2

Oy+l | o v o [X2 y+1 | x-L,y+1 | X, y+1 | x+L,y+1 [x+2,y+1| . . . X, y+1

0y . o o X-2,y x-1,y X,y X+1,y X+2,y e o o X,y

0,y-1 . e . X-2,y-1 | x-L,y-1| xvy-1 | x+ly-1| x+2,y-1 X, y-1

0,y-2 X-2,y-2 | X-L,y-2| Xy-2 | x+ly-2| x+2,y-2 X,y-2

0,0 O x-2,0 x-1,0 X, 0 x+1,0 x+2,0 « .. X,0

Figure 5: The Quadrants

4 INITIAL METRICS

probability mass function for a UAS according to the
weights of its local neighborhood. Akin to a roulette
wheel, the UAS then determines where a uniformly
distributed random variable between 0 and 1 (e.g.,
the ball) falls within the cumulative distribution func-
tion (e.g., the wheel’s bins; see Figure 7 below).

Local Neighbor Normalized
W,y
of (x.y) Wy

x-1,y+1 0.423 0.098
X y+1 0.954 0.222
x+1, y+1 0.769 0.179
x-1y 0.019 0.004
x+1,y 0.212 0.049
x-1,y-1 0.408 0.095
X y-1 0.938 0.218
x+1,y-1 0.577 0.134

Total 4.301 1.000 Local

Neighbor

ml

m2

=3

4

m5

w6

7

0.004 8

Figure 7: Roulette Selection Example

In this way, the UAS is more likely to select adjacent
grid squares with lower weights, thereby injecting a
stochastic element into an otherwise deterministic al-
gorithm. Interestingly enough, the use of roulette se-
lection in the control of swarming UAS is not new.
In particular, in their paper "Digital Pheromones
For Autonomous Coordination Of Swarming UAS"
Parunak et al. describe its use in the ADAPTIV al-
gorithm (Parunak et al., 2002).

4 Initial Metrics

Developing improved rule sets implies that we want
or need to (a) fix a problem with our current rule

set, (2) ramp-up its current performance, or (3) in-
ject additional capabilities. Regardless of the rea-
son, each requires that we develop a set of metrics to
assess and compare the algorithms. Of course, this
begs the question, how does an effective swarm be-
have? In order to address this, we assume that the
UAS are operating on a featureless, uninformed AO.
Put another way, we do not have intelligence (en-
emy or geospatial) about the AQ. This distinction is
quite important, because it forces us to treat each
grid square equivalently. In other words, we have no
reason to suspect that any given grid square is more
or less likely to contain a target. Under this assump-
tion, some potential measures of swarm effectiveness
are:

e The coverage must be complete (As t — oo, all
cells are visited.)

e The coverage must eliminate sanctuaries

— Geospatially: All cells are recurrent.

— Temporally: The coverage minimizes the
time between cell visitation.

e The coverage should be uniform (As t — oo, the
number cell visitations per cell are nearly equiv-
alent.)

e The behavior should appear random (acyclic
geospatially and temporally)

Accordingly, we developed the following metrics:

1. Standard Deviation of Visitation Counts
(on,,): Nz, is defined as the number times
(z,y) is visited (observed) by a UAS during a
simulation run. On a featureless, uninformed
AO, a good algorithm should evenly distribute
its visitations between the grid squares. Accord-
ingly, we can use the standard deviation of N, ,
to gauge the closeness of the visitation counts,
where smaller oy, = are preferred.

2. Maximum Initial Visitation Time
(Mlgx teyay): Maxty y,, is defined as the latest

time a UAS visits any (z,y) during a simula-
tion run. One may think of this quantity as a

5 PRELIMINARY EXPERIMENTATION AND ANALYSIS

measure of the diffusive speed for the swarm,
where good performing algorithms visit each
grid square within the AO as soon as possible,
allowing for the quick detection of static targets
that exist at ¢t = 0.

3. Maximum Maximum Intervisitation Time
((MAfmx(Max Aty y)): Mathematically, the

times between UAS visitations for (z,y) or
Aty are defined by the sequence {t,

WYy
txyyu)) tmvy(S) - tz,ym, ERRR) tmay(n,+1) - tmvy(n)} for
n e 0,...,N;, —1]. Clearly, the maximum of

this sequence represents the best opportunity
for an enemy combatant to act within (z,y)
without being observed. Accordingly, good al-
gorithms should minimize this quantity across
the entire AO.

4. Maximum Average Intervisitation Time
(ng&tmyy): Aty ,, is defined as the average time

between UAS visitations for (z,y). Similar to
the above, by minimizing the maximum average
intervisitation time, a swarming algorithm can
effectively frustrate the enemy’s uninhibited use
of any portion of the AO.

5 Preliminary Experimentation
and Analysis

Prior to the development of the 8 new controllers,
preliminary testing and evaluation were performed

on last year’s algorithm (Controller #3). Specifically,
using a swarm of 10 UAS (S = 10), an arbitrarily
sized AO (X = 71,Y = 36), and a sufficiently long
run time (7" = 30,000), we calculated the relative
and absolute performance of Controller #3 on the
four previously mentioned metrics. Additionally, in
order to provide informative, realistic results, it was
necessary to scale the dimensions of each cell in light
of the published cruising speed and future sensor ca-
pabilities of the Shadow UAS.

For example, according to FMI 3-04.155, the
Shadow’s estimated, unclassified cruising speed is 70
knots (Department of the Army, 2006). Following
simple dimensional analysis, this equates to 35.98 me-
ters / second. Moreover, in Table 2-7 of FMI 3-04.155
it states that the Shadow’s current observable target
area is 3.5m x 3.5m (Ibid., pg. 2-9). If we assume an
order-of-magnitude increase in the width of the ob-
servable target area by FY2020, then we can conve-
niently set the length and width of each grid square to
35m. Using this scaling, we can now equate each unit
of simulated time to 1 second, providing a good ap-
proximation for the amount of time required to tran-
sit and observe a given cell within our AO. Finally,
in order to initiate the replications, we directed the
swarm to enter the AO from the north at cell (20,1)
in an echelon-left formation.

5 PRELIMINARY EXPERIMENTATION AND ANALYSIS

5.1 Visitation Counts

Throughout the simulation, the by-cell visitation times were continuously calculated, updated, and stored
in an output array. This data was then post-processed using simple Excel pivot tables and conditional
formatting to generate the visitation counts figures seen below. As we examine the relative performance
of Controller #3, we notice a greater concentration of red-shaded cells in the center of the AO, while the
boundaries appear to contain more green. Moreover, when the data is examined in an absolute sense, where
cells visited more than 100 times are shaded green, the affinity of the UAS for the boundary becomes more
apparent. Finally, it is worth noting that minimum and maximum N, , were 48 and 176 respectively, and
ON. = 16.

z,y

S
2
5
z
=
%
z
5
z
2
2
=
2
z
2
3
5
Relative Performance
(Green is highest; Red is lowest)
S Y AR X T e E e A B B BN BN BN EA A Ey ek
1]efe elele ele/e(e|e e/e
2] o/o/e/e/el® (] [3] o8 e/e (1] elele
BN [] Clele[e (]] []] [[]
I a []] []]] [] a []
s|@[® [] ele [] []
e[e[o) o[e @
ele alc|e
A ® ele
®) ® elele ® ®
fm) elelele 0] ()
wlolel [[el o [[] [) Tlele
s[ele[ele[e] |e [e[c[e[o|e[]e]e S0 ele
) ee[e[e oo [e|ele[o(e]e] [o]t [[K
) elelo]e oo elole: AL
elel [@ o] ALK IC [AL
® AL @ @@ @
® ele e|e ® elele))
ele| [elole]e [e[(@ ®
) el [elelele] [olo[a] [¢ IL
[] elel |elelele[|elele]e I [
e e @[« eeje[e|e|e]e elc|e [
[ele ®le] ¢)) [
)) o[(o] [o] [elele]e « [o
[e [] “le EICIL [I I
® e[eo]e ele@[[e0]e (Y EERL N BN ® [[
ele|e[e[e|e|e ® C)) [) @
[elel (o] [® elo (o] (o]) ool) o
elelole]e I i) [) Slolo] o [0 [)
@00 [[[@ ® [@0 @0 [
e[e [[elee[e elele @[C[@[e]s @ 3 @ ¢ elee] ® [@
elelee ® elele® @ elelee ®) [[[[@ @le]¢
o[[o]oo] C elolelelele[[[e]e <) slele 9]¢ @lo] [0l [oo
elolole|ele|elolele] [elole]: K e[[[elele L elolelol AL elole[elo]e
Gloojo|oe|e/o[e|e|ee o]e] [N eeele[ele Gleoe|oo0|o]o] ® 0] eole|ole]e

Absolute Performance
(Green > 100 wvisits > Yellow > 75 visits > Red)

Figure 8: Cell Visitation Counts for Controller #3

5 PRELIMINARY EXPERIMENTATION AND ANALYSIS

5.2 Initial Visitation Times

As seen in the relative performance graph below, there is a clear bias for the area surrounding the swarm’s
point of entry. This is to be expected, and it serves as a form of verification more than an indicator of
performance. However, when the same data is examined in absolute terms, where the maximum initial
visitation time is 735 seconds and all cells visited in less than 5 minutes are shaded green, the overall initial
diffusive performance seems adequate.

:
;
:
:
:
:
:
:
:
-
i
a
:
:
3
3
h
3
¥
Relative Performance
(Green is earliest; Red is latest)
D ENENENERED m wTw PnEEnED
1 [] [] [] [] ele []
2 [] [] [] [] ale []
3 [] [] []
4 a [] a []
5 L [] L]
6 3] a a
7 [] a a []
8 a eale ale ale
9 [] a ale [] a a
10 [] ele]]
11 []]]
12] ele] esle|e []
13 [] ele []]]
14 ele []] ele]]
15 ele [] ele []
16 e e [] [] [] ele [] []
[] ele e ele [] ele
ale elele [] [] []
[] [] [] ale eele [] []
—+ —++ =+ : :
@« [] [‘ []
[] [¢ [] [] [] a8 []
[] [‘ [‘ 1) []
[] a [] [] 3] a
[] a a [] [] a
a [] @6
7 a [] [] ele
8 []
29 [] [] [] a
30 [] e e []]]
31]
32 []] []]
33 1] []]] elele ele]
ule ele|e [] [] [] ele [] elele [] [] []
(@ e ele [] [] elele] [] ele [] ele|e
6|@ ejele [] [] elelejele elele ejele

Absolute Performance
(Red > 10 minutes > Yellow > 5 minutes > Green)

Figure 9: Maximum Initial Visitation Times for Controller #3

10

5 PRELIMINARY EXPERIMENTATION AND ANALYSIS

5.3 Maximum Intervisitation Times

While the initial visitation times seem quite acceptable, the maximum intervisitation times are worrisome.
Specifically, in relative terms, it appears that the UAS have an affinity for the boundary, as shown by
the denser concentration of green cells around the edges of the AO. Moreover, when we set the minimum
acceptable performance to 1 hour, nearly all cells in the center of the AO fail (as indicated by the red
shaded cells). In fact, the worst performing cell had a maximum intervisitation time of 7032 seconds (or 1
hour and 57 minutes)! When we contrast this poor performance with the acceptable performance on the
initial visitation times (where the swarm visits each cell in roughly 10 minutes), one thing is clear — diffusive
performance is not constant.

o o[| [[L o [[[[[e [e [e [[[[e [[[[[[[[[[[[|

Relative Performance
(Green is shortest; Red is longest)

o[[s || s [|

Absolute Performance
(Red > 1 hour > Yellow > 30 minutes > Green)

Figure 10: Maximum Intervisitation Times for Controller #3

11

5 PRELIMINARY EXPERIMENTATION AND ANALYSIS

5.4 Average Intervisitation Times

Similar to the maximum intervisitation times, the relative, average intervisitation times indicate that the
UAS have an affinity for the boundary. To the contrary, however, the absolute performance also appears
acceptable, as the entire AO is shaded green and yellow, indicating that all cells are visited in less than 10
minutes on average. Therefore, when we consider (a) that the maximum intervisitation times are unaccept-
able and (b) that the initial and average diffusive performance seem adequate, it appears that the swarm’s
entropy decreases as a function of time. In other words, the longer the simulation runs, the more ordered
the behavior of the swarm becomes.

kzls e[[< o] o~

5 [en [e [e s o o o8 o e 2 e 0

Relative Performance
(Green is shortest; Red is longest)

7 IECH [T 52 TN Y Y W IR TN Y I I A I B) S A Y N [soTaoTar e [as T aa] [asTsoTsiTsa 5T sass 56 o] w8 w0 ol 1]e] o3 cales[co] o ool mo]m]
1] [] []] ele/ele]|e elele elele|e [] ele ele e/e/e/e/e/e/e/e]e ele [
2|4 @] ele [] ele ej/e|e ele/ele(e [ele/e(e]e] [] (1] CICAK
E K [e) 90 0] o elelolole (3 K K KN K A (] ¢ [
o [[) [ol [o] [@ IS ¢ (3K
s T elele @))) [
6|4 []] []]]]]
7] [] [] ® elelele [] []
[[0 (o KN K K KN [O olele () [[)
5|4 [] 0] K () [)
0% ° [® ole|e @e elee [[] @0
11| elee @ 0] @ ele|e|e|e] @ @]e
A slele < Te T oL 0 AN oToT = < T [[[
] Gloelole [EI [0] ole [K) alol)] [EIK @[
1] eloje[[ele|e[e olelo|o[o|ele[ole]| [elo] [o]o]e ole|ele(a]e ole 0]] 3K K 3K
15[® [olele a]e @e AN o] I) () [] [] @ [« @ [@]¢
] [3I0) @« e[Cle[eo] I 110])] 1) @@ [AN
[IS o[[[oo eIk 0]]] 3K eIk 1K)
) o[o[[o]0] @] [[N) NS [K
ele []] [[]] [] []] [] [] [] o] []
elee [] @] [] [] [] ele []] []
1 [() [[(21 () [(]] S]]
2 I ENE I ole (3K olelele] @ 2 [N KN) [] al o
5] o0 olelele elelolol o e[e olelole @
24 [[ale [] o] ele|e [ele] [[} ele
eloe K] (3] K K
o[[o[e (]] 0] 0 K K N SN Glo[o[o]
0 K (] elo[[a]e [] S K Sle| [0 [[
(] (K []] []] []] []] [] ele(ele ele [
ele|e ele] [] (K [] [C ele clo/e/e|e]e® [[[
[] 0])] K olo|ele(oo]: 900
1] 4 9 K [] IS elelo|o(e 2 (K 9[ool0 (3K
2[4 o o1 e olololo]e ole[o] [ele] [o olelole (e [Glojolelele c
3 [4 [8[@]¢ [ele K (] C ale [] elele (] e [ee ele]s [
4] 3K K e[[o]o] (] [N oo @0 [
554 3K Slololele 1 N N) [1) olo]o] 0] olo[o] G0
@ olo]e olololelele ol0] dlolol |elolololelelole @ olololelele @ 901 [

Absolute Performance
(Red > 10 minutes > Yellow > 5 minutes > Green)

Figure 11: Average Intervisitation Times for Controller #3

12

5 PRELIMINARY EXPERIMENTATION AND ANALYSIS

UAV Trajectories
S = 10, Controller #3

1500 —

1000 —

o
<}
3
[

Time Units (seconds)

Figure 12: UAV Trajectories in Space/Time (t = 1. . . 1000)

5.5 UAYV Trajectories in Space and Time

In order to test the decreasing entropy hypothesis, we plotted the trajectories of the UAS in space and time.
Seen Figure 12 below, the horizontal plane represents the AO, and the vertical dimension is time. Within
this volume each of the erratic, multicolored lines represents the location of a UAS. In this way, Figure 12
provides a snapshot of the swarm’s historical contrails over the first 1000 units of simulated time. When
viewed from the side (the top panel) or from the top (the bottom panel) the swarm’s behavior appears
Brownian, and it fills the volume. In other words, there is no apparent order; it appears to be operating as
intended.

When we advance the simulation clock to 22700 and plot the swarm’s contrails for the subsequent 1000
time units, a much different picture emerges. Seen in Figure 13, the volume is not filled, and the coverage
appears sparse. In fact, the swarm appears to have actually lost UAS, as many of the colorful lines from
Figure 12 appear to missing! Upon closer inspection, however, we are actually observing the output of a very

13

5 PRELIMINARY EXPERIMENTATION AND ANALYSIS

interesting development within the swarm — flocking. Evident in the small, left inset of Figure 13, the black
line is actually a tight grouping of UAS flying together, confirming the the decreasing entropy hypothesis.

UAV Trajectories
S =10, Controller #3

x10 — | [T
2.85 | d
— 4 =
2]
) = ==
E — — =
] 2.8 -
k) =
¢ == ==
i s
o — =
£ -
=

Flocking

Figure 13: UAV Trajectories in Space/Time (t = 22700 . . . 23700)

Absolute Performance
(Green > 100 visits > Yellow > 75 visits > Red)

Figure 14: Cell Visitation Counts for Controller #3 (Near Simultaneous Visits Removed)

14

6 VOLUME SUPPRESSED

With this in mind, when we control for flocking by
removing the near simultaneous visits from the visi-
tation counts, the absolute performance of Controller
#3 significantly degrades. Specifically, when con-
trasted with Figure 8, the decrease in absolute per-
formance shown in Figure 14, is rather astonishing
and poor, as the average visitation count drops from
96 to 22.

6 Volume Suppressed

As seen above, metrics 1 - 4 allow us to compare the
relative performance of the controllers against each
other and a desired standard using a given test case,
and, based on the previous section, Controller #3 is
inefficient and ineffective. While plotting trajectories
in 3-space and examining metrics 1 — 4 are extremely
enlightening, it is also time consuming and computa-
tionally clumsy. Accordingly, we desire a holistic met-
ric and an automated way to evaluate various UAS
parameters (and controllers) to see how efficient and
effective a swarm would be given a software solution.

From an operational standpoint, the swarm should
limit the ability of the enemy to maneuver freely.
With this in mind, we introduce the enemy’s windows
of opportunity, space/time windows for the enemy to
maneuver unobserved. In a visual sense, these win-
dows are represented as rectangular prisms within the
space/volume absent of any UAS contrails (see Fig-
ure 15). That is, over a contiguous portion of the AQ
throughout a given duration of time, no UAS passed
overhead. In this way, the terrain is unobserved, and
the enemy may act with impunity. Accordingly, good
controllers should minimize the volume of these rect-
angular prisms. Put another way, they should maxi-
mize the space/time volume suppressed.

Additionally, there is a minimum amount of time re-
quired for an enemy to take action within a given
area. For example, if a UAS observed a given grid at
11:30:05 AM and the next UAS passed overhead at
11:30:23 AM, it is unrealistic to think that an insur-
gent could have placed an improvised explosive de-
vice (IED) during the 18 seconds of unobserved time.

Moreover, even if the insurgent could place the IED
in 18 seconds, he undoubtedly would delay his em-
placement both before and after the passage of the
first UAS, as he would hear and / or see the UAS
both before and after the actual observed time, but
he would not know exactly what terrain the UAS was
observing. In sum, while there was 18 seconds of un-
observed time, the area was successfully suppressed.

In the same way, we need to consider the minimum
amount of stand-off distance for an enemy to take
action at a given location. Using the example above,
if a UAS observed a given grid at 11:30:00 AM and
the next UAS passed overhead at 12:30:00 PM, then
we might think that any reasonably competent in-
surgent could have place an IED during the hour of
unobserved time. However, if a UAS passed overhead
in at least one adjacent grid every 30 seconds during
this hour, then it is unrealistic to think that an in-
surgent would have placed an IED. Simply put, there
is just too much UAS activity in close proximity to
his location, and, once again, the insurgent does not
know exactly what terrain the UASs are observing.
The area was successfully suppressed.

procedure calculate volume suppressed

for x =1to X
for y=1to Y
fort=0to T
if there is no UAV in (z,y,t)
then i =1¢+1
else
if i >t
then VUS =VUS +i
1=0
end for t =0to T
end for y=1to Y
end for r =1to X
VS=1-VUS/(X xY xT)

15

7 CONTROLLER COMPARISON

2.85—

N
@
[

2.75—+

Time Units (seconds)

Figure 15: Enemy Windows of Opportunity

With this in mind, we define width of opportunity
(w”) and time of opportunity (t°) thresholds that es-
tablish these minimums. As such, in order for a grid
to be successfully suppressed, a UAS need only pass
overhead within w’ grids and within ¢’ time units
of the previous suppression. In the simplest case
(e.g., when w” = 0), the pseudo-code for calculating
volume suppressed (VS) from volume unsuppressed
(VUS) is given on the previous page.

7 Controller Comparison

Armed with volume suppressed, we are now ready to
compare the 9 controllers. Using a swarm of eight
UAS (S = 8), we set t* = 25 time units and record
their the performance for w” = 1 to 36. As seen in
Figure 16, Controllers #2 and #3 clearly underper-
formed their stochastic competitors, to include the
simple random walk.

16

Volume Suppressed
(Awidth of Suppressed Area), Swarm Size = 8, dt = 25)

S

9 11 13 15 17 19 21 23 25 27 29 31 33 35

Controller
—

—_—2

—3
—a

—5

Volume Suppressed
(%)

—6

—7

—8

9

1 3 5 7

Width of Suppressed Area
(grid squares)

Figure 16: Controller Performance - Volume Sup-
pressed as a Function of Area Width (¢ = 25)

When t’ is increased to 300 time units (5 minutes),
we begin to see separation among the stochastic con-
trollers, especially among the mixture models with
Controller #7 (a mixture model which randomly se-

7 CONTROLLER COMPARISON

lects between Controllers #2 and #3) emerging as
the best alternative (see Figure 17). In fact, when
t’ is increased to 600 time units (representing a 10
minute time of opportunity threshold), Controller #7
is able to suppress over 85% of the space/time volume
even at an w’ of 1 (see Figure 18), while last year’s
best controller, Controller #3, does not see this per-
formance until w’ reaches 24. In short, Controller #7
is very effective.

Volume Suppressed
(AWidth of Suppressed Area), Swarm Size = 8, dt = 300)

1 — S

/ B
e
W =
o |

9 11 13 15 17 19 21 23 25 27 29 31 33 35

Controller

—

o
@

o
=

Volume Suppressed
(%)

13 5 7

Width of Suppressed Area
(grid squares)

Figure 17: Controller Performance - Volume Sup-
pressed as a Function of Area Width (¢* = 300)

Volume Suppressed
(AWidth of Suppressed Area), Swarm Size = 8, dt = 600)

Controller
—1

—_—2

—3
—

04 —s

N V& B
/

Volume Suppressed
(%)

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Width of Suppressed Area
(grid squares)

Figure 18: Controller Performance - Volume Sup-
pressed as a Function of Area Width (¢* = 600)

While viewing volume suppressed as a function of w’

is useful, it is also valuable to see it as a function of
the swarm size. That is, given a set ¢’ and w’, what
is the volume suppressed that can be achieved for a
swarm size S?7 To examine this question, we looked
at controller performance for swarms of 1 to 34 with
t’ and w’ set to 300 and 4 respectively. The results
of these experiments are given in Figure 19 below.

Volume Suppressed
(flswarm Size), width of suppressed area = 4 grid squares, dt = 300)

08 Controller
—_—1
—_—2

—3

—

—5

—6

Volume Suppressed
(%)

7
8

“ % | ’

1 2 3 5 8 13 21 34
Swarm Size
(#of UAS)

Figure 19: Controller Performance - Volume Sup-
pressed as a Function of Swarm Size

As seen above, Controller #7 outperforms all oth-
ers for swarms of 3 or more UAS, and, even with a
swarm of 34, Controller #3 cannot outperform Con-
troller #7 with a swarm of 5. Simply put, Controller
#7 is very efficient.

In light of the above analysis, Controller #7 per-
forms the best in the aggregate. That is, Con-
troller #7 maximizes volume suppressed over the en-
tire space/time volume. Aggregation (or by propor-
tionality averages), however, can be deceiving. With
this in mind, we can examine volume suppressed at
the individual grid-level to determine where, if at all,
Controller #7 may be weak and another controller
may be strong.

Accordingly, we set ', w’, and S to 300, 4, and 8
respectively, and we compared Controller #7 to Con-
trollers #1, #2, and #3. From Figure 20 on the next
page, it is obvious that Controller #7’s grid-level vol-
ume suppressed (denoted by the light blue markers)

17

7 CONTROLLER COMPARISON

Volume Suppressed

=8

300; Swarm Size

4 x 4; dt >=

f(x,y), Suppressed Area

® Controller 1
® Controller 2
® Controller 3

Controller 7

s o o o o
(9%) passaiddng swn|oA

Figure 20: Volume Suppressed as a Function of Location

18

9 CONCLUSIONS

uniformly outperformed the others. Additionally, it
is interesting to note that while Controller #1 (the
Symmetric Random Walk) outperformed Controllers
#2 and #3; the mixture of Controllers #2 and #3
(Controller #7) was far superior.

8 Future Work

As discussed in Section 2.3, while controlling a swarm
of UASs via digital pheromones is currently being
pursued by multiple agencies, the research to date has
focused on detecting targets that are present and has
not focused on area denial. Moreover, documented
efforts have neither (1) incorporated intelligence es-
timates to guide the swarm nor have they (2) used
probabilistic updating to influence its behavior. Ac-
cordingly, it is natural for our future efforts to take
us in these directions.

In the first case, the development of several promising
threat assessment methods (namely Riese’s Threat
Mapper and Huddleston and Browns’ Multi-Level
Models) make incorporating intelligence estimates
relatively straight forward (Karalus & Riese, 2009;
Huddleston & Brown, 2009). For example, if we re-
place the constant decay parameter X\ in py ,(t) =
Yoye N tw) with the non-homogeneous, decay pa-
rameter, A, = A1 + &(f(threal, ,)), where (a) § =
1 if the threat surface is active and 0 otherwise and
(b) f(threaty,) € [0,1]; monotonically increasing,
then we can add an appropriate threat premium to
cells based on their underlying threat. In theory, this
formulation will increase the rate of decay on higher
threat cells, causing the UAS to visit them more fre-
quently. This particular approach is attractive, not
only due to its simplicity but also its generality, as
the threat map can effectively be turned off via &.2

While this proactive approach uses prior information
to influence swarm behavior, the UASs’ actual ob-
servations provide additional, valuable information,
and we should update our threat assessments based

on what they observe. With this in mind, we can
model the underlying threat probability itself as a
random variable with a Beta(a, 8) distribution.* As
the Beta distribution is conjugate, if a UAS observes
a threat in given cell, then the cell’s updated, poste-
rior threat probability distribution is Beta(a + 1, 5),
else it is Beta(a, 5+ 1). Exploiting this relationship,
we can further modify p, ,(t) = 7, e rewEtew)
as Ppy(t) = Auye” (WArey T2)0tew) where
Ar,, = A(E(P(threat in (x, y)))) and w; +we = 1.
Again, in theory, this will decay cells with higher
threat probabilities at a faster rate, thereby focus-
ing the swarm’s attention on them (without ignoring
the less threatening areas). Moreover, the incorpora-
tion of the weighting parameters w; and wq allows us
to tune the model to be more proactive or reactive as
required.

9 Conclusions

As mentioned in Section 2.2, the principal research
tasks for this study were to:

e Develop improved rule sets for controlling
swarming behavior,

e Develop a modeling and simulation test bed for
swarming, small UASs in order to test the dif-
ferential aspects of system components, and

e Evaluate various UAS parameters to see how effi-
cient / effective a swarm would be given a set of
hardware (software) and recommend hardware
(software) solutions.

Based on the performance of Controller #7, the
Haskell simulation given in the Appendix, and the
development of volume suppressed (a novel metric
for assessing relative controller performance as well
as gauging swarm efficacy), we have delivered.

3This approach was successfully modeled in 2010 as part of a USMA Department of Systems Engineering cadet capstone

project.

4Bertuccelli and How use this method for a single UAS in “Robust UAV search for Environments with Imprecise Probability

Maps,” IEEE, 2005, pg. 5680-5685.

19

9 CONCLUSIONS

While this is satisfying from an analyst’s perspective, mission package and the tactical situation.
it provides little, tangible value if it does not bene- Future Force Soldiers must individually pos-
fit the ultimate stakeholder, the Small Unit Leader. sess an expanded ability to control multi-
Fortunately, the recent remarks of Dr. Killion, the ple autonomous / semi-autonomous systems
Chief Scientist of the Army, allay this concern: (Killion, 2010).

The future operating environment will Accordingly, in 20 years time, we may take the
see a significant increase in the use of un- “chaotic yet strangely orchestrated” movements of
manned systems requiring the direct em- large numbers of UAS for granted, as swarms du-
ployment and monitoring of multiple sys- tifully collect intelligence, deter enemy action, and
tems. Unmanned systems must be able to perhaps even attack. Surely, its algorithms and tech-
execute complex tactical behaviors in com- nology will make ours look novice and antique by
plex environments with minimal required comparison. Nonetheless, should we see such a day
operator control or intervention thus freeing as Dr. Killion suggests, then we will know that we
the Soldier / Robotic Controller to be able played an early albeit small role in a development
to accomplish other mission essential tasks that helped Soldiers, and that is beyond satisfying —
such as monitoring the unmanned systems it is everything.

20

A HASKELL SIMULATION CODE

A Haskell Simulation Code

A.1 Main

Main/Run

Cook, J. MR SSD, Inc.
2009

1 Parameters controlling the run

1.1 Types and defaults

data RunParameters m aoi = RunParameters
{runRandomSource :: SomeRandomSource

, runLength :: Double
, runUavFormation :: [(Trajectory, LoiterControllerE)|
, runHooks :: RunHooks m
}
data RunHooks m = RunHooks
{initializeRun 2 [m ()]
, initializeUav 2 [UAV m — m ()]
}

defaultRunParameters = RunParameters
{ runRandomSource = defaultRandomSource
, runLength = 30000
,runUavFormation = take 10
[(trajectory, LC (RandomWalk (AOI (100,100)) 1))
| trajectory < vFormation 50

]
, runHooks = defaultRunHooks

}

defaultRunHooks = RunHooks
{\initializeRun =]
, initializeUav =]

}

1.2 Convenient functions for adding hooks

addInitHook hook params = params
{runHooks = (runHooks params)

21

A HASKELL SIMULATION CODE

22

{initializeRun = hook : initializeRun (runHooks params)

}
}

addUavHook hook params = params
{runHooks = (runHooks params)
{initializeUav = hook : initialize Uav (runHooks params)
}
}
addUavEventHandlerHook trigger action
= addUavHook $ Auav — do
addUavEventHandler uav trigger action
return ()

Invocation of a run

doRun WithMMap Updates cleanup aot mmap params = do
doRun $ addUavEventHandlerHook trajectoryChanged
(scheduleMemoryMap Updates cleanup aoi mmap) params

doRun RunParameters
{runRandomSource = randomSource
, runLength = runLength
s runUavFormation = uavFormation
, runHooks = runHooks
} = runEventGraph $ do
scheduleEventIn runLength StopSim

sequence_ (initializeRun runHooks)

sequence_
[do
wav < mkUav n startTrajectory
scheduleEventAt (endT startTrajectory) (Arrive uav)
addUavEventHandler uav trajectoryChanged
(doNext o Depart)

addUavEventHandler uav completed Trajectory
(runLoiterController controller randomSource)
sequence_
[initUav uav
| initUav < initializeUav runHooks

]
|n<+[1..]
| (startTrajectory, controller) < uavFormation
J

A HASKELL SIMULATION CODE

3 The simulation machinery

Control flow is quite simple, and once you grok it’s pretty easy to manipulate.
A rough overview of what’s going on:

3.1 Arrive

A UAV arrives at its intended destination. It triggers the “completed trajectory”
event for the uav, causing the loiter controller to run and select a new trajectory.
The assignment of a new trajectory causes the Depart event to be scheduled
as well as (possibly many) UpdateMemoryMapCell event(s) and callback(s) to
onEnterCell.

data Arrive m = Arrive (UAV m)
instance Monad m = MonadEvent m (Arrive m) where
describeEvent (Arrive uav) = do
uav < describeUav vav
return (text "Arrive" <4> parens uav)
runEvent (Arrive uav) = do
fireUavEvent uav completed Trajectory uav

return ()

3.2 Loiter controller invocation

Each UAV will have this hook registered to evaluate its loiter controller whenever
it reaches the previously assigned destination.

runLoiterController randomSre controller uav = do
currentPos < getCurrentPosition uav
dest < chooseNextCell randomSrec controller currentPos
uav ‘plotTrajectoryTo* dest

3.3 Depart

A UAV is leaving a cell. When this event fires, a new Arrive event is scheduled
at the time the uav is expected to complete its current trajectory.

data Depart m = Depart (UAV m)
instance (Monad m, ScheduleEvent m Double (Arrive m)) = MonadEvent m (Depart m) where
describeEvent (Depart uav) = do
uav — describeUav uav
return (text "Depart" <+> parens uav)
runBEvent (Depart uav) = do
trajectory < getUavTrajectory uav
now < getCurrentTime

23

A HASKELL SIMULATION CODE

if startT trajectory % now
then fail "Depart fired at weird time"
else do
let arrivalTime = maz 0 (endT trajectory — now)
scheduleEventIn arrivalTime (Arrive uav)
return ()

3.4 UpdateMemoryMapCell

A uav is entering a cell. Which uav is irrelevant. The cell will be “touched”
and nothing else happens.

data UpdateMemoryMapCell mmap cell
= UpdateMemoryMapCell (TVar mmap) cell Double Double
instance MonadFEvent EventM (UpdateMemoryMapCell MMap_ Cell)
where
describeEvent (UpdateMemoryMapCell _mmap cell t0 t1) =
return o fcat o map text
$ words "Mark memory map at cell"
H [show cell]
+H words "at times"
+ [show (t0,t1)]
runEvent (UpdateMemoryMapCell mmap cell t0 t1) =
modifyReference mmap (addObservationRange cell (t0,t1))

3.5 Scheduling updates to the memory map

Whenever a uav’s trajectory changes, scheduleMemoryMapUpdates is invoked
to schedule UpdateMemoryMapCell events for every cell that the specified tra-
jectory will touch, as well as (optionally, controlled by the cleanup parameter) a
cleanup hook to cancel pending updates if the trajectory changes prematurely.

scheduleMemoryMap Updates cleanup aoi mmap vav = do
trajectory < getUavTrajectory uav
let transitions = cellTransitionsOnTrajectory aoi trajectory
spans = [(t0,t1, cell)
| (0, cell) + spanEnds
| (t1,_) < drop 1 spanEnds

]

spanEnds =
maybeToList (timePos2Cell aoi (startT trajectory) (startPos trajectory))
H- transitions H-
maybeToList (timePos2Cell aoi (endT trajectory) (endPos trajectory))

-- schedule events and return (time, eventId)

24

A HASKELL SIMULATION CODE

events < sequence $
[do
-- at time span begins, tag the cell for the duration of the span
eld + scheduleEventAt t0 (UpdateMemoryMapCell mmap cell t0 t1)
return (0, eld)
| (t0,t1, cell) < spans
]
-- add hook to cancel future events if the trajectory changes
when cleanup $ addOneShotUavEventHandler uav trajectoryChanged $ A_uav — do
now < getCurrentTime
mapM _ cancel Event
[event
| (¢, event) < events
,t > now

]

return ()

25

A HASKELL SIMULATION CODE

A.2 Neighborhood

SimpleUav/Neighborhood

Cook, J. MR SSD, Inc.
2009

1 A type describing neighborhoods of cells

At present, only two types of neighborhood are implemented - the empty neigh-
borhood and a very simple neighborhood defined by two radii. The first spec-
ifies one half the side length of a square. The second specifies a manhattan
distance inside which will not be searched. In all experiments performed for
MAJ Dabkowski’s work, the values used were 1 and 0 respectively, giving a
neighborhood consisting of the 8 cells adjacent to the aircraft’s current cell.

data Neighborhood a where
EmptyNeighborhood :: Neighborhood a
SimpleNeighborhood :: (Num a, Enum a, Ord a, Show a) =
a — a — Neighborhood (a, a)

emptyNeighborhood :: Neighborhood a
emptyNeighborhood = EmptyNeighborhood
stmpleNeighborhood :: (Num a, Enum a, Ord a, Show a) = a — a — Neighborhood (a, a)
simpleNeighborhood r1 12
| null (cellNeighborhood (SimpleNeighborhood r1 r2) (0,0))
= EmptyNeighborhood
| otherwise = SimpleNeighborhood r1 12

2 Sampling Neighborhoods

The cellNeighborhood function converts the specification for a neighborhood into
a function which actually lists the cells in the neighborhood of a specified cell.
The CellNeighborhood type is a convenient alias for the type of such functions.

type CellNeighborhood a = a — [a]
cellNeighborhood :: Neighborhood a — CellNeighborhood a
cellNeighborhood EmptyNeighborhood _ =[]
cellNeighborhood (SimpleNeighborhood 11 12) (z,y) =
[((z+de,y+dy) | de <« [—rl..r1]
ydy «+ [—rl..r1]

26

A HASKELL SIMULATION CODE

,abs dz + abs dy > r2

]

3 Sampling neighborhoods based on position

Similarly, positionNeighborhood looks up which cells are in the neighborhood
of a specified spatial location. The correspondence additionally depends on
an IrregularCellularAOI with cells of the appropriate type. Cells that are not
a part of the AOI are excluded from the neighborhood, and if none are left
after filtering or if the position given is not in the AOI, then a neighborhood is
returned consisting of one or more arbitrary cells nearest the position.

type PositionNeighborhood a = (Double, Double) — [a]
positionNeighborhood :: IrregularCellularAOI aoi cell =

aoi — Neighborhood cell — PositionNeighborhood cell

positionNeighborhood aoi cn position =
case cellContainingPosition aoi position of
Nothing — cellsNearPosition aoi position
Just cell — let neighborhood =
filter (celllnAoi aoi) (cellNeighborhood cn cell)
in if null neighborhood
then cellsNearPosition aoi position
else neighborhood

stmplePositionNeighborhood ::
(IrregularCellularAOI aoi (a, a)
, Num a, Enum a, Ord a, Show a
) = aoi — a — a — PositionNeighborhood (a, a)
simplePositionNeighborhood aoi r1 12 =
positionNeighborhood aoi (simpleNeighborhood r1 r2)

27

A HASKELL SIMULATION CODE

A.3 Cell Selection

28

SimpleUav/CellularChooser

Cook, J. MR SSD, Inc.
2009

1 Cell-score-based controller support code

Both the SimpleNeighborhood and QuadrantAveraging controllers, and many
others that might be implemented later, are based on a cell-scoring or -weighting
model, where cells are nominated, scored or weighted, and selected based on the
score or weight. Two models are implemented here for performing the actual
selection for such a scheme.

The runCellularChooser uses a cellular chooser to implement the selection
part of a controller’s task. It produces a list of candidates (which by con-
struction of the positionNeighborhood function will not be empty) and chooses
from among them according to the cellular chooser. Also by construction of
positionNeighborhood, the cell chosen will be inside the AOI, so the final con-
version back to a cell position will not fail.

class CellularChooser chooser score where
chooseCellByScore :: chooser — [cell]
— (cell — score)
— RVar cell
data Chooser score where
Chooser :: (CellularChooser chooser score, Show chooser)
= chooser — Chooser score

instance CellularChooser (Chooser score) score where
chooseCellByScore (Chooser ¢) = chooseCellByScore ¢
instance Show (Chooser score) where
showsPrec p (Chooser ¢) = showsPrec p ¢

runCellularChooser
2 (IrregularCellularAOI aoi cell,
CellularChooser chooser score)
= chooser — aoi — (Double, Double) — Neighborhood cell
— (cell — score)
— RVar (Double, Double)
runCellularChooser chooser aoi currentPos neighborhood score
= do let candidates
= positionNeighborhood aoi neighborhood currentPos

A HASKELL SIMULATION CODE

when (null candidates)
(fail "runCellularChooser: no candidates!")
winner < chooseCellByScore chooser candidates score
case positionOfCell aoi winner of
Just dest — return dest
Nothing — fail ("runCellularChooser: programming error, "
++ "selected cell was not in the AOI.")

1.1 (Mostly-)Deterministic selection

The Deterministic chooser first selects the cell(s) with the highest score. In
case of a tie, a uniformly-weighted random selection is made from the list of

tied cells.

data Deterministic = Deterministic
deriving (Eq, Show)
instance (Ord score, Distribution Uniform score)
= CellularChooser Deterministic score
where
chooseCellByScore Deterministic candidates score = do
let winners = mazimaBy (comparing score) candidates
randomElement winners

1.2 Roulette selection

The Roulette chooser selects from a list of cells using the cells’ scores as relative
weights in a discrete distribution.

data Roulette = Roulette
deriving (Eq, Show)
instance (Ord score, Fractional score,
Distribution Uniform score)
= CellularChooser Roulette score
where
chooseCellByScore Roulette candidates score
= discrete scoredCandidates
where
scoredCandidates =
[(score ¢, c)
| ¢ + candidates

]

29

A HASKELL SIMULATION CODE

A.4 Controllers

SimpleUav/LoiterControllers

Cook, J. MR SSD, Inc.
2009

1 The LoiterController class

The LoiterController type class specifies the interface loiter controllers must
provide. The LoiterControllerE type is an existential type allowing loiter con-
trollers of different types to be handled together.

class LoiterController ¢ where
describeLoiterController
it ¢ — 10 Doc
chooseNextCell
:t (MonadIO m, MonadTime m Double, RandomSource m s)
= ¢ — s — (Double, Double) — m (Double, Double)

data LoiterControllerE = Vc.LoiterController ¢ = LC ¢

instance LoiterController LoiterControllerE where
describeLoiterController (LC' ¢) = describeLoiterController ¢
chooseNextCell (LC c¢) = chooseNextCell ¢

2 Some simple controllers

2.1 Random Walk

The Random Walk controller is configured with a distance parameter specifying
the maximum number of cells in either dimension it will travel each time it makes
a decision. The distance it chooses to travel in each dimension is independent
of the other.

If the chosen destination is not inside the AOI, a random cell inside the AOI
is chosen from among those nearest the current position of the UAV.

data RandomWalk aoi = RandomWalk
{rwAoi :: aoi
,rwDist i Int

}

instance (IrregularCellularAOI aoi (Int, Int), Pretty aoi)
= LoiterController (RandomWalk aoi) where

30

A HASKELL SIMULATION CODE

describeLoiterController (RandomWalk {..}) =
return (text "RandomWalk"
<> pPrint rwAoi
<> pPrint rwDist)

chooseNextCell (RandomWalk {..}) src currentPos = do
(dz, dy) < sampleFrom src (randomJump rwDist)

let destination = do -- Maybe monad
(z,y) + cellContainingPosition rwAoi currentPos
positionOfCell rwAoi (z + dz,y + dy)

case destination of
Just pos — return pos
Nothing — sampleFrom src (jumpIntoAoi rwAoi currentPos)

randomJump dist = jump
where
Jjump = do
dz < uniform (—dist) dist
dy < uniform (—dist) dist
ifde=0ANdy=0
then jump
else return (dz, dy)
jumplIntoAoi aoi currentPos = randomFElement candidates
where candidates = cellPositionsNearPosition aoi currentPos

2.2 Local Neighborhood

The SimpleNeighborhood controller implements the simple exponential-decay
pheremone-based local neighborhood controller. Operating within the specified
AOI, according to the specified cellular chooser, it selects a cell from within the
specified neighborhood based on scores derived from the memory map.

The score of a cell is given as one minus the pheremone level for that cell.
‘When operating under the deterministic chooser, the cell chosen will be the one
with the maximum score (and therefore the minimum pheremone level). When
using the roulette chooser, the score will be interpreted as a relative weight for
that cell.

data SimpleNeighborhood aoi chooser cell mmap

= SimpleNeighborhood

{snAoi i aoi

, snChooser :: chooser

, snLambda :: Double

, snNeighborhood :: Neighborhood cell
, snMMap :: TVar mmap

}

instance (MemoryMap mmap cell

A HASKELL SIMULATION CODE

, IrregularCellularAOI aoi cell

, Pretty aoi

, Ord cell, Show cell

, CellularChooser chooser Double

, Show chooser

) = LoiterController

(SimpleNeighborhood aoi chooser cell mmap)

where

describeLoiterController (SimpleNeighborhood {..})
= return (text "SimpleNeighborhood:"

<> pPrint snAoi
<> text (show snChooser)
<> pPrint snNeighborhood)

chooseNextCell (SimpleNeighborhood {..}) src currentPos
=do
mmap < readReference snMMap
t < getCurrentTime
let score cell =1 — readDecayLevel snLambda mmap cell t

let destination = runCellularChooser snChooser snAoi
currentPos snNeighborhood score

sampleFrom src destination

3 Composite controllers

3.1 “Mixed” controller

Each invocation of MizedController randomly chooses from the provided list of
controllers with the associated relative probability weights.

newtype MizedController
= MizedController [(Double, LoiterControllerE)]
instance LoiterController MizedController where
describeLoiterController (MizedController cs) = do
descriptions < sequence
[do
descr < describeLoiterController c
return (hang empty 8 (pPrint p <> colon) <+> descr)
| (pyc) cs

return (text "MixedController:" <+> fcat descriptions)
chooseNextCell (MizedController cs) src currentPos = do

¢ < sampleFrom src (discrete cs)

chooseNextCell ¢ src currentPos

32

A HASKELL SIMULATION CODE

A.5 Output Analysis

Main/Analysis

Cook, J. MR SSD, Inc.

2009

Abstract

This module defines and implements the basic administrative machin-
ery used to specify which analysis data to generate and where to send

it.

1 Data types for controlling run analysis output

The AnalysisProduct type is an algebra for specifying a set of data to be col-
lected during or after a run. The AnalysisParams type defines all user-tuneable
parameters controlling the data collection and analysis for a run, including a
definition of where (if anywhere) each analysis product should be sent.

The anaOutput field of AnalysisParams specifies zero or more destinations

for each AnalysisProduct to be generated. Its type is parameterized because it
will initially be specified as a String specifying the file path, but before the run
those files will be opened and their paths replaced by file handles.

data AnalysisProduct

= Metadata

| MMap Updates

| MMap UpdatesByUav Int
| MMap UpdatesByCell Cell
| MMapCoverage

| VoidsBySquare Square

| VoidsByCell Cell

| VoidsBySize Int

| VoidLengthsBySquare

| VoidLengthsBySize Int

| MaxExtentBySquare

| ExtentStatsBySquare

| ExtentStatsBySize
deriving (FEq, Ord, Read, Show)

data AnalysisParams h = AnalysisParams

{anaRunName 2 String
, anaLoggerName 1 String

33

A HASKELL SIMULATION CODE

, anaQutput it Map.Map AnalysisProduct [h]
, anaUnobsFilter :: Int — Double — Bool

, anaAoi wAOI

, anaSeqgMMap :: Bool

, anaCleanupEvents :: Bool

}

2 Predefined sets of parameters

Functions to construct analysis parameters describing standard sets of analysis
outputs. These are parameterized by run names, because they specify default
filenames for the outputs as well as which outputs to produce.

default AnalysisOutputs runName = Map.fromList
[(Metadata, [runName H " .txt"])
, (MMap Coverage, [runName +H " . txt"])
, (MMapUpdates, [runName + "_mmap.txt"])
]

minimalAnalysisOutputs runName = Map.fromList
[(Metadata, [runName + " .txt"])
, (MMap Coverage, [runName H " . txt"])

]

defaultAnalysisParameters runName = AnalysisParams

{anaRunName = runName

,analLoggerName = runName H ".analysis"

, anaQutput = defaultAnalysisOutputs runName
,anaUnobsFilter = A_sz _dt — True

, anaAoi = AOI (100, 100)

, anaSeqMMap = True

, anaCleanupEvents = False

}

3 Output file management

Functions to handle opening and closing of the analysis output files used in
a run. openAnalysisFiles is slightly more complex than might be expected,
because it caches the open file handles to avoid opening the same file more than
once if it is the destination for multiple analysis products.

openAnalysisFiles anaParamsQAnalysisParams
{anaOutput = outputNames} = do
let logger = anaLoggerName anaParams

34

A HASKELL SIMULATION CODE

+- ".openAnalysisFiles"
files < newRef Map.empty

openedQutputs < Traversable.forM outputNames $ Anames —
forM names $ Aname — do
cached < readsRef files (Map.lookup name)
case cached of
Just handle — do

debugM logger $ unwords
[name
,"already opened, returning cached handle"
, show handle
]

return handle

Nothing — do

debugM logger $ unwords
[name
,"not yet opened, opening and caching"
]

handle < openFile name WriteMode

hSetBuffering handle (BlockBuffering Nothing)

modifyReference files (Map.insert name handle)

return handle

return anaParams { anaOutput = openedOutputs }

closeAnalysisFiles AnalysisParams { anaOutput = outputFiles}
= sequence_
[do
isOpen < hIsOpen handle
when isOpen $ do
hFlush handle
hClose handle
| handles <+ Map.elems outputFiles
s handle < handles

]

4 Analysis output routing

The following functions manage the routing and formatting of the analysis out-
put data. lookupOutput, lookupOutputs and lookupOutput Where retrieve the
file handles to which a particular piece of analysis data should be printed.

The various output... functions compute and format the data and send it
to the appropriate files. The multiOutput... functions do the same for data
considered to be a part of multiple analysis products.

Haskell’s lazy evaluation is used in a critical way here - generally speaking,
these functions are called for all analysis products, regardless of whether they

35

A HASKELL SIMULATION CODE

will be output (or of how many times they will be output). The analysis data will
be passed to these functions in unevaluated form, so that if it is not formatted
and printed, it will not be unnecessarily computed. Similarly, if it is printed
more than once, it will not be unnecessarily recomputed or reformatted.

lookupOutput prod anaParams =
Map.findWithDefault [] prod (anaOutput anaParams)

lookup Outputs prods =
lookupOutputs Where (€ prods)

lookup Outputs Where p anaParams = nub
[file
| (prod, files) < Map.toList (anaOutput anaParams)

,p prod
, file < files

]
{-# INLINE outputLn #-}
outputLn anaParams outType line
| null outputs = return ()
| otherwise = liftIO $ sequence-
[hPutStrLn out line
| out + outputs

]

where outputs = lookup Output outType anaParams

outputRow anaParams outType row
| null outputs = return ()
| otherwise = liftIO $ sequence_
[hPutStrLn out (tabsep row)
| out < outputs

]

where outputs = lookup Output outType anaParams

outputRowWhere p anaParams row
| null outputs = return ()
| otherwise = liftIO $ sequence_
[hPutStrLn out o tabsep $ row
| out < outputs

]

where outputs = lookup Outputs Where p anaParams

multiOutputRow anaParams outTypes row
| null outputs = return ()
| otherwise = LiftIO $ sequence_
[hPutStrLn out (tabsep row)
| out < outputs

]

where outputs = lookupOutputs outTypes anaParams

36

A HASKELL SIMULATION CODE

outputTable anaParams outType table
| null outputs = return ()
| otherwise = liftIO $ do
infoM logger $ unwords
["Outputting table for"
, show outType
"o
, show (length outputs)
, case outputs of
[L] = "file."
_ — "files."
]
dt + time_$ sequence_
[hPutStrLn out (tabsep row)
| row < table
, out <— outputs
]
infoM logger $ unwords
["CPU time used:"
, show dt
, "seconds"
]
where
outputs = lookup Output outType anaParams
logger = anaLoggerName anaParams +H "." H show outType

multiOutput Table logger anaParams outTypes table
| null outputs = return ()
| otherwise = liftIO $ do
debugM logger $ unwords
["Outputting table for"
, show outTypes
"o
, show (length outputs)
,case outputs of
[-] — "file."
_ — "files."
]
dt < time_$ sequence_
[hPutStrLn out (tabsep row)
| row < table
, out < outputs
]
debugM logger $ unwords
["CPU time used:"
, show dt

37

A HASKELL SIMULATION CODE

,"seconds"

]

where
outputs = lookupOutputs outTypes anaParams

38

REFERENCES

References

Abatti, James M. 2005. Small Power: The Role of
Micro and Small UAVs in the Future. M.Phil. the-
sis, Air Command and Staff College.

Arquilla, John, & Ronfeldt, David. 2000. Swarming
and the Future of Conflict. RAND Corporation.

Bae, Youngchul. 2004. Target Searching Method In
The Chaotic UAV. IEFEE, 12.D.8.1-12.D.8.9.

Bertuccelli, L. F., & How, J. P. 2005. Robust UAV
Search for Environments with Imprecise Probabil-
ity Maps. Proceedings of the 44th IEEE Conference
on Decision and Control, and the European Con-
trol Conference 2005, 5680—5685.

Dasgupta, P. 2008. A Multi-agent Swarming Sys-
tem for Distributed Automatic Target Recognition.
IEEE Transactions on Systems, Man, Cybernetics,
38, 549-563.

Department of Defense. 2009 (April). F'Y2009-203/
Unmanned Systems Integrated Roadmap.

Department of the Army. 2006. FMI 3-04.155: Army
Unmanned Aircraft System Operations.

Huddleston, Samuel H., & Brown, Donald E. 2009.
A Statistical Threat Assessment. IEFEE: Trans-
actions On Systems, Man, and Cybernetics, 39,
1307-1315.

Karalus, Randall, & Riese, Stephen R. 2009 (Febru-
ary). Threat Mapper Orientation.

Killion, Thomas. 2010 (May).
Warfighter Outcomes.

10 Comprehensive

Parunak, H., Purcell, M., & OConnell, R. 2002. Dig-
ital Pheromones For Autonomous Coordination Of
Swarming UAV’s. AIAA, 1-9.

Shachtman, Noah. 2008 (March).
Shortage in Irag.

Deadly Drone

Shachtman, Noah. 2009 (February). Drone Surge.

Sujit, P.B., Sinha A., & Ghose, D. 2006. Multiple
UAV Task Allocation Using Negotiation. AAMAS,
471-478.

Teague, Edward, & Kewley, Robert. H. 2008. OR-
CEN Technical Report: DSE-TR-0808 - Swarming
Unmanned Aircraft Systems. DTIC: ADA489366,
1-30.

Walter, B., Sannier, A., Reiners, D., , & Oliver, J.
2006. UAV Swarm Control: Calculating Digital
Pheromone Fields with the GPU. JDMS, 3, 167-
176.

39

REFERENCES

Nomenclature

AMRDEC Aviation and Missile Research, Develop-
ment, and Engineering Center

IED Improvised Explosive Device

ORCEN Operations Research Center of Excellence
OSD Office of the Secretary of Defense

SASC Semi-Autonomous Self-Organizing

UAS Unmanned Aerial Systems

40

